Blow Up Analysis for Anomalous Granular Gases
نویسنده
چکیده
We investigate in this article the long-time behaviour of the solutions to the energydependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is “anomalous”, in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. We study existence and uniqueness of blow up profiles for this model, together with the trend to equilibrium and the cooling law associated, generalizing the classical Haff’s Law for granular gases. To this end, we investigate the asymptotic behaviour of the inelastic Boltzmann equation with and without drift term by introducing new strongly “nonlinear” self-similar variables.
منابع مشابه
Root causes analysis of the Blow out of oil and gas wells in the drilling industry using Bow-Tie Analysis
Abstract Background and aims: One of the major concerns in the oil and gas drilling industry are Blowouts. Blowout could have severe consequences, such as fire and explosions, releases of toxic gases and environmental disasters. The aim of this study is to identify the root causes of kick and blowout in drilling industry. Methods: In this study, FTA investigates root causes of a k...
متن کاملNontrivial Velocity Distributions in Inelastic Gases
Granular gases present novel challenges, previously not encountered in fluid dynamics [1]. Specifically, the strong underlying energy dissipation leads to clustering instabilities and strong velocity correlations [2–7]. A series of recent experimental and theoretical studies reveals a rich phenomenology. In particular, velocities are characterized by anomalous statistics, sensitive to the detai...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملAnomalous exponents of self-similar blow-up solutions to an aggregation equation in odd dimensions
We calculate the scaling behavior of the second-kind self-similar blow-up solution of an aggregation equation in odd dimensions. This solution describes the radially symmetric finite-time blowup phenomena and has been observed in numerical simulations of the dynamic problem. The nonlocal equation for the self-similar profile is transformed into a system of ODEs that is solved using a shooting m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2012